ESSDERC Presentation

Effect of Ions Presence in the SiOCH Inter Metal Dielectric Structure

REBUFFAT Benjamin^{1,2,3}, DELLA MARCA Vincenzo², OGIER Jean-Luc¹, PAULET Olivier¹, LOPEZ Laurent¹, MANTELLI Marc¹, MASSON Pascal³, LAFFONT Romain²

STMicroelectronics, Rousset
IM2NP, Marseille
UNS-EPIB, Sophia-Antipolis

Summary

> Introduction

> Context

> Technical details

Electrical characterization

- Leakage annealing at high temperature
- Leakage kinetic at room temperature

➤ Modelling

- Leakage current simulation
- Time to breakdown modelling
- Conclusion

Low-k dielectrics are used:

To reach the resistance capacitance (RC) reduction requirement for scaled down microelectronics devices

Low-k dielectrics : reliability issue [1]-[4]

- Lower dielectric strength
- High leakage current
- Premature breakdown

>Purpose :

- Understand the conduction mechanisms into Inter Metal Dielectric (IMD) structure
- Explain physically the high leakage current
- Investigate time to breakdown issue

[1] E. T. Ogawa, IRPS, 2003[3] J. R. Lloyd, J. Appl. Phys., 2005

[2] K. Y. Yiang, Appl. Phys. Lett., 2003[4] G. G. Gischia, IRPS, 2010

IntroductionElectrical characterizationModellingConclusionTechnical details4/18

Pad 1: Comb line Pad 2&3 : Serpentine line

TEM cross section IM

IMD structure stack

>Experimental measurement

- Linear Ramp Voltage Stress (LRVS)
- Leakage current versus voltage applied (I-V)
- Time Dependent Dielectric Breakdown (TDDB)

Temperature effect on I-V characteristics 7/18

 \succ Temperature increasing \rightarrow Leakage current increasing

> E_a=0.45eV significant of a physical phenomenon

> High temperature (T>75°C) \rightarrow Saturation phenomenon

Conclusion

Leakage annealing at high temperature

> Bake temperature increasing \rightarrow Time to reach 2pA decreases

> Activation energy of leakage annealing = 0.75 eV

Leakage kinetic at room temperature

> Room temperature (25°C) \rightarrow leakage current increasing

$$I_{leak} = I_{leak_max} \times \left(1 - e^{-\left(\frac{t - t_0}{k}\right)}\right)$$

ESSDERC 43rd European Solid-State Device Research Conference

Introduction

Electrical characterization

Modelling

Conclusion

13/18

Ions movement

Introduction Electrical characterization Modelling Conclusion

Time to breakdown : voltage acceleration 14/18

> TDDB experimental values follows a power law : TDDB ~V⁻ⁿ

Conclusion

15/18

Time to breakdown modelling 1/2

For same stress condition, TDDB may be wafer dependent

Dependence on different initial leakage level

Introduction Electrical characterization Modelling Conclusion Time to breakdown modelling 2/2 16/18

> TDDB depends on initial leakage current

17/18

Conclusion

Electrical characterization

- Bake impact
- Leakage current annealing at high temperature
- Leakage current kinetic at room temperature

➤ Modelling

- Leakage current simulation
- Time to breakdown modelling

> Forecast

- > TDDB modelling taking into account the annealing phenomenon
- Ions movement at high temperature and room temperature
- > Ions species

Some questions ?

Contact : benjamin.rebuffat@st.com

