

Performance Limit of Parallel Electric Field Tunnel FET and Improvement by Modified Gate and Channel Configurations

Yukinori Morita, Takahiro Mori, Shinji Migita, Wataru Mizubayashi, Akihito Tanabe, Koichi Fukuda, Takashi Matsukawa, Kazuhiko Endo, Shin-ichi O'uchi, Yongxun Liu, Meishoku Masahara, and Hiroyuki Ota

> Green Nanoelectronics Center(GNC) Nanoelectronics Research Institute (NeRI) AIST Japan

Background

- Why tunnel FET (TFET)
- Parallel electric field TFET (PE-TFET)
- Performance of PE-TFET
 - Device fabrication
 - Experimental results

Proposal of Synthetic electric field TFET (SE-TFET)

- Device fabrication
- Experimental results

Summary

Conventionally V_{dd} scaling causes a significant increase in I_{off} due to the lower limit of SS (~60mV/dec.)

 V_{dd} scaling without I_{off} increase can be done by steepening the SS

Why tunnel FET?

Carrier flow is determined by thermal-injection mechanism SS > 60mV/dec. Carrier flow is determined by BTBT transport mechanism SS < 60mV/dec.

Lateral & vertical TFETs

• Two TFET architectures

Lateral (conventional) TFET

Vertical

BTBT is limited in interface -->> Small I_D

BTBT area is enlarged

C. Hu et.al., VLSI-TSA 2008, 14 (2008) R. Li et.al., Phys. Status Solidi C 9, 389 (2012) Y. Morita et.al, Jpn. J. Appl. Phys. 52, 04CC25 (2013)

- Performance of the parallel electric field TFET (PE-TFET), relation between ON current and overlap length, is analyzed.
- Proposal of modified TFET architecture to improve electrostatics (Synthetic electric field TFET)

Performance of the PE-TFET

Operation of p- & n-PE-TFETs

Effect of L_{ov} increase

Confirming I_D increase with increasing L_{OV} ON current degraded at L_{OV} > 1000 nm

Effect of L_{ov} increase

Analysis using a distributed-element circuit

Effect of L_{ov} increase

Relation between I_D and L_{OV}

Experimental results

Limit of drain current in PE-TFET

$$I_{ONMAX} \sim \sqrt{\frac{G}{R_C}} V_D$$

-->> Self-voltage-drop effect in thin channel

Trade off Enhancing G <<-->> Reducing R_C

Balance between tunnel conductance and channel resistance is critical.

Proposal of modified TFET architecture

Size Proposal of synthetic electric field TFET

• Multiplication of lateral & vertical electric fields

Fabrication of SE-TFET with epichannel

Based on source/drain-first CMOS process

• Small amount of defects at epitaxial channel/source interface

<u>Sheen</u>

Simulation of electric field

- Electric field at edges is enlarged by SE-effect.
- Scaling of channel thickness and width enhances SE-effect

• Better performance in narrower channel device

• I_D at $W_{CH} = 0$ corresponds to the edge current.

Edge current is enhanced by D_{EPI} scaling.

• Scaling of both D_{EPI} and W_{CH} enhance performance

Performance of SE-tunnel FinFET

Summary

Parallel electric field TFET

- Limit of ON current
- Balance between tunnel conductance and channel resistance is critical

Synthetic electric field TFET

- Scaling induced performance enhancement
- FinFET-like slim device is promising.
- Significant performance in small voltage SS_{MIN} = 58, I_D = 4 uA/um @(V_G, V_D)=(-0.5, -0.2 V) 400 uA/um @(V_G, V_D)=(-2, -1 V)
- The concept can be applicable to Ge or III-V TFETs.

This research was supported by JSPS through the First Program, "Development of Core Technologies for Green Nanoelectronics".

Thank you for your kind attention.

Benchmark

• Maximum I_D at $L_{OV} \sim 50$ nm

• Scaling of both D_{EPI} and W_{FIN} enhance performance.

Both Sides + Top E-fields

<u>Sheen</u>

SIMS analysis of dopant profiles

 Dopant steepness in the epitaxial channel is maintained below 900 °C.

Impact of SE effect

• Significant increase of ${\rm I}_{\rm D}$ in the SE-TFET

	This work	This work	This work	This work	Villalon et al VLSI2012 [8]	Villalon et al VLSI2012 [8]	Knoll et al EDL2013 [9]	Zhou et al IEDM2012 [10]	Zhou et al IEDM2012 [10]	Dewey et al IEDM2011 [11]
Types	р	р	р	р	р	р	р	n	n	n
Materials	Si	Si	Si	Si	SiGe30%	SiGe30%	Si	GaSb/InAs	GaSb/InAs	InGaAs
Structures	DL Fin	DL Fin	DL Fin	DL Fin	ETSOI	ETSOI	Nanowire	Vertical	Vertical	Vertical
Boosters	DL Fin	DL Fin	DL Fin	DL Fin	Strain	Strain	Strain Metal S/D	III-V	III-V	III-V
V _D (V)	-1	-1	-0.2	-0.2	-1	-1	-0.5	1	0.5	0.3
V _G (V)	-2	-1	-1	-0.5	-2	-1	-1	1	0.5	~0.48
V _{ON} -V _{OFF} (V)	-2	-1	-1	-0.5	-2	-1	-1	2	1.5	0.5
I _{ON} (uA/um)	417	82	40	4	~300	~10	~5	380	180	5.7
I _{MIN} (uA/um)	2.00E-04	2.00E-04	2.00E-06	2.00E-06	3.70E-05	3.70E-05	~2e-6	5.07E-02	3.00E-02	1.00E-04
I _{ON} /I _{MIN}	2.09E+06	4.10E+05	2.00E+07	2.00E+06	8.11E+06	2.70E+05	2.50E+06	7.50E+03	6.00E+03	5.70E+04
SS _{MIN} (mV/dec)	70	70	58	58	~120	~120	90	200	200	58
EOT (nm)	1.3	1.3	1.3	1.3	1.25	1.25	3 nm HfO ₂	1.3	1.3	1.1
L _G (nm)	60	60	60	60	200	200	200	-	-	100

I_D-V_G of SE-TFETs

• Symmetric operation of p & n SE-TFETs

Tunability of Lov

Fig. 4 Typical CV characteristics for the PP-capacitor of VTM TFETs. Variations in the different Lov are shown. (a) Experimental and (b) simulation results. (c) Measurement setup.

Sub-threshold condition (Potential)

Saturation condition (Potential)

Saturation condition (Potential)

