

Mobility enhancement by integration of TmSiO IL in 0.65nm EOT high-k/metal gate MOSFETs

E. Dentoni Litta, P.-E. Hellström, M. Östling KTH Royal Institute of Technology, School of ICT Electrum 229, SE-164 40 Kista, Sweden <u>eudl@kth.se</u>

The following slides are a reduced version of the presentation delivered at ESSDERC 2013

EOT-mobility tradeoff

Advantages of high-k interfacial layers

Device fabrication

TmSiO formation

Integration in a realistic gate stack

➢Results

Electrical characterization of N- and P-MOSFETs

Mobility improvement compared to SiO_x/HfO₂ stacks

Conclusion

EOT-mobility tradeoff

Advantages of high-k interfacial layers

Device fabrication

TmSiO formation

Integration in a realistic gate stack

➢Results

Electrical characterization of N- and P-MOSFETs

Mobility improvement compared to SiO_x/HfO₂ stacks

≻Conclusion

2013-09-18

- >High-k/metal gate technology suffers from EOT-mobility tradeoff
- >The main factor is the thickness of the interfacial layer (IL)
- Scavenging is widely employed to control the IL thickness
- ➢High field electron mobility has been shown to decrease by ~40cm²/Vs per 0.1 nm reduction in IL thickness [Ando, Materials, 2012]

Introduction: LaSiO IL

>IL thickness trade-off can be overcome by increasing κ

>La diffusion from capping layer can form a silicate IL with lower EOT

Compatible with:

- N-MOSFET
- Gate-first

KTH VETENSKAP OCH KONST

Introduction: high-k IL

- >Direct integration of a high-k IL can be designed to achieve:
 - Compatibility with any gate stack (N and P)
 - Compatibility with gate-first and gate-last integration
 - Improvement of the EOT-mobility tradeoff curve
- >The silicate should be chosen as to provide:
 - High к (>10)
 - Good electrical quality of the interface with Si
 - Compatibility with Hf-based gate stacks

Introduction: TmSiO

Silicates can be formed from many lanthanide oxides

	57 ² D _{3/2}	58 ¹ G ^o ₄	59 ⁴ I ^o _{9/2}	60 ⁵ I ₄	61 ⁶ H ^o _{5/2}	62 ⁷ F ₀	63 ⁸ S [°] _{7/2}	64 °D ₂ °	65 ⁶ H [°] _{15/2}	66 ⁵ I ₈	67 ⁴ I ^o _{15/2}	68 ³ H,	69 ² F ^o _{7/2}	70 ¹S _o	71 ² D _{3/2}
	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er 🚺	Tm	Yb	Lu
	Lanthanum	Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
	138.9055	140.116	140.90765	144.24	(145)	150.36	151.964	157.25	158.92534	162.500	164.93032	167.259	168.93421	173.04	174.967
	[Xe]5d6s	[Xe]4f5d6s	[Xe]4f 6s	[Xe]4f 6s	[Xe]4f 6s	[Xe]4f 6s	[Xe]4f 6s	[Xe]4f 5d6s	[Xe]4f 6s	[Xe]4f 6s	[Xe]4f 6s	[Xe]4f 6s	[Xe]4f 6s	[Xe]4f 6s	[Xe]4f 5d6s
L	5.5769	5.5387	5.473	5.5250	5.582	5.6437	5.6704	6.1498	5.8638	5.9389	6.0215	6.1077	6.1843	6.2542	5.4259

>Requirements:

- Low reactivity with Si and $H_2O \rightarrow High$ atomic number
- k of the oxide > 15
- E_G of the oxide > 5 eV
- Conduction and valence band offsets > 1 eV

>Tm₂O₃ is a good candidate: k=16, $E_G=5.5$ eV, CBO/VBO >2eV [Wang 2012]

➤TmSiO has similar dielectric constant to LaSiO (k=10-12)

TmSiO IL has been shown to provide good electrical properties [Dentoni Litta et al., IEEE Trans. Electr. Dev., 2013]

2013-09-18

EOT-mobility tradeoff

Advantages of high-k interfacial layers

Device fabrication

TmSiO formation

Integration in a realistic gate stack

➢Results

Electrical characterization of N- and P-MOSFETs

Mobility improvement compared to SiO_x/HfO₂ stacks

➤Conclusion

2013-09-18

>Thulium silicate IL module is integrated with HfO₂/TiN stack

➤Gate-last CMOS process

- Starting substrate with pre-formed source/drain
- >Surface clean in H_2SO_4 : H_2O_2 and 5% HF
- > Deposition of Tm_2O_3 by ALD

• System:

- Beneq TFS 200
- Precursors:
 - $TmCp_3$ and H_2O
- Deposition temperature:
 - 250 °C

ESSDERC 2013, BUCHAREST

- > Post deposition anneal in N₂ for 60s
- TmSiO thickness is controlled by PDA temperature [Dentoni Litta et al., ULIS 2013]
- ➢PDA at 500 °C yields 0.8±0.1 nm

>Tm₂O₃ needs to be removed selectively

- Etching solution needs to be CMOS-compatible
- > H_2SO_4 etches Tm_2O_3 with > 23:1 selectivity toward TmSiO

> Deposition of HfO_2 by ALD (2 nm)

- >Deposition of TiN by reactive sputtering (15 nm)
- >Post metallization anneal (N_2 , 425 °C, 5 min)

EOT-mobility tradeoff

Advantages of high-k interfacial layers

Device fabrication

TmSiO formation

Integration in a realistic gate stack

➢Results

Electrical characterization of N- and P-MOSFETs

Mobility improvement compared to SiO_x/HfO₂ stacks

≻Conclusion

Results: C-V characterization

>30 N-FETs and 30 P-FETs measured on 100 mm wafer

>Low hysteresis:

N: 0-50 mV, P:0-20 mV

- EOT extracted by CVC fitting [Hauser 1998]:
 N: 0.65-1.1 nm
 P: 0.8-1.2 nm
- > Perfect agreement with CET values:
 - N: 1.0-1.6 nm P: 1.25-1.6 nm

Results: I-V characterization

KTH vetenskap och konst

Results: high-field electron mobility

>Mobility improvement compared to SiO_x/HfO_2 stacks

>20% enhancement for N-MOSFETs at high field

2013-09-18

ESSDERC 2013, BUCHAREST

Results: high-field hole mobility

>Mobility improvement compared to SiO_x/HfO_2 stacks

▶15% enhancement for P-MOSFETs at high field

ESSDERC 2013, BUCHAREST

Results: interpretation of the N mobility data

>Remote scattering mechanisms are modulated by IL thickness

- >Thicker TmSiO IL (~0.8 nm) can reduce remote scattering from HfO_2
- >Electron mobility in TmSiO/HfO₂ versus reference SiO_x/HfO₂:
 - Comparable low-field mobility
 - >20% higher peak and high-field mobility

EOT-mobility tradeoff

Advantages of high-k interfacial layers

Device fabrication

TmSiO formation

Integration in a realistic gate stack

➢Results

Electrical characterization of N- and P-MOSFETs

Mobility improvement compared to SiO_x/HfO₂ stacks

Conclusion

➤TmSiO IL can be integrated in HfO₂-based gate stacks

➢Good electrical performance achieved for both N and P-MOSFETs

Subthreshold slope = 80-90 mV/dec for NFETs, 65-70 mV/dec for PFETs

>Low EOT achieved in gate-last CMOS process

0.65 nm for NFETs, 0.8 nm for PFETs

>Observed electron/hole mobility improvement at high field

+20% for NFETs, +15% for PFETs

Likely consequence of the higher physical thickness of the IL

Acknowledgment

European Research Council

European Union ERC Advanced Grant 228229 "OSIRIS"

Swedish national research infrastructure for micro and nano fabrication

European Union, Network of Excellence Nanofunction (NoE: 257375)

Thank you for your attention