
Mobility enhancement by 
integration of TmSiO IL in 0.65nm 
EOT high-k/metal gate MOSFETs

E. Dentoni Litta, P.-E. Hellström, M. Östling
KTH Royal Institute of Technology, School of ICT
Electrum 229, SE-164 40
Kista, Sweden
eudl@kth.se

2013-09-18 ESSDERC 2013, BUCHAREST 1
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Introduction: IL scavenging

High-k/metal gate technology suffers from EOT-mobility tradeoff

The main factor is the thickness of the interfacial layer (IL)

Scavenging is widely employed to control the IL thickness

High field electron mobility has been shown to decrease by ~40cm2/Vs 

per 0.1 nm reduction in IL thickness [Ando, Materials, 2012]
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Introduction: LaSiO IL

IL thickness trade-off can be overcome by increasing κ

La diffusion from capping layer can form a silicate IL with lower EOT
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Introduction: high-k IL

Direct integration of a high-k IL can be designed to achieve:
• Compatibility with any gate stack (N and P)

• Compatibility with gate-first and gate-last integration

• Improvement of the EOT-mobility tradeoff curve

The silicate should be chosen as to provide:
• High κ (>10)

• Good electrical quality of the interface with Si

• Compatibility with Hf-based gate stacks
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Introduction: TmSiO
Silicates can be formed from many lanthanide oxides

Requirements:
• Low reactivity with Si and H2O -> High atomic number

• k of the oxide > 15

• EG of the oxide > 5 eV

• Conduction and valence band offsets > 1 eV

Tm2O3 is a good candidate: k=16, EG=5.5 eV, CBO/VBO >2eV [Wang 2012]
TmSiO has similar dielectric constant to LaSiO (k=10-12)
TmSiO IL has been shown to provide good electrical properties [Dentoni Litta 
et al., IEEE Trans. Electr. Dev., 2013]
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Device fabrication
Thulium silicate IL module is integrated with HfO2/TiN stack

Gate-last CMOS process
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Device fabrication
Starting substrate with pre-formed source/drain

Surface clean in H2SO4:H2O2 and 5% HF

Deposition of Tm2O3 by ALD

• System:
- Beneq TFS 200

• Precursors:
- TmCp3 and H2O

• Deposition temperature:
- 250 °C
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Device fabrication
Post deposition anneal in N2 for 60s

TmSiO thickness is controlled by PDA temperature [Dentoni Litta et al., 
ULIS 2013]

PDA at 500 °C yields 0.8±0.1 nm
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Device fabrication
Tm2O3 needs to be removed selectively
Etching solution needs to be CMOS-compatible
H2SO4 etches Tm2O3 with > 23:1 selectivity toward TmSiO
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Device fabrication
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Deposition of HfO2 by ALD (2 nm)

Deposition of TiN by reactive sputtering (15 nm)

Post metallization anneal (N2, 425 °C, 5 min)
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Device fabrication

Gate patterning

PECVD SiO2 passivation

Ti/TiW/Al metallization

Forming gas anneal
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Results: C-V characterization

EOT extracted by CVC fitting [Hauser 1998]:
N: 0.65-1.1 nm P: 0.8-1.2 nm

Perfect agreement with CET values:
N: 1.0-1.6 nm P: 1.25-1.6 nm
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30 N-FETs and 30 P-FETs 
measured on 100 mm wafer
Low hysteresis:

N: 0-50 mV, P:0-20 mV



Results: I-V characterization
IDVG characterization shows good uniformity

Low subthreshold slope, symmetric VT

Mobility extracted by split-CV
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Results: high-field electron mobility

Mobility improvement compared to SiOx/HfO2 stacks

20% enhancement for N-MOSFETs at high field
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Results: high-field hole mobility

Mobility improvement compared to SiOx/HfO2 stacks

15% enhancement for P-MOSFETs at high field
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Results: interpretation of the N mobility data
Remote scattering mechanisms are modulated by IL thickness
Thicker TmSiO IL (~0.8 nm) can reduce remote scattering from HfO2

Electron mobility in TmSiO/HfO2 versus reference SiOx/HfO2:
Comparable low-field mobility

20% higher peak and high-field mobility
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Conclusion

TmSiO IL can be integrated in HfO2-based gate stacks

Good electrical performance achieved for both N and P-MOSFETs

Subthreshold slope = 80-90 mV/dec for NFETs, 65-70 mV/dec for PFETs

Low EOT achieved in gate-last CMOS process

0.65 nm for NFETs, 0.8 nm for PFETs

Observed electron/hole mobility improvement at high field

+20% for NFETs, +15% for PFETs

Likely consequence of the higher physical thickness of the IL
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