Full-band simulation of p-type ultra-scaled silicon nanowire transistors

Áron Szabó and Mathieu Luisier

Integrated Systems Laboratory, ETH Zürich

17.9.2013, Bucharest

2 Simulation approach

3 Model validation

Investigation of p-type NWFETs

Motivation	Simulation approach	Model validation	Investigation of p-type NWFETs	
Outline				

- 2 Simulation approach
- 3 Model validation
- Investigation of p-type NWFETs

Simulation approacl

Model validation

Nanowire FETs

http://www.intel.com/technology/ architecture-silicon/22nm

FinFET (Intel, 2011): 3-D tri-gate structure.

- Better electrostatic control than in planar devices.
- Less leakage current.
- Steeper subthreshold slope.
- Higher ON-current.

What is next? Natural evolution of FinFETs towards ultra-scaled, circular, gate-all-around nanowires (NWFETs with d = 3 nm already exist).

Computer simulations can accelerate the transistors' evolution (selecting the adequate materials, structural parameters...).

N. Singh et al. IEEE Electron Device Letters, vol. 27, no. 5 p. 383 (2006)

Motivation Simulation approach Model validation Investigation of p-type NWFETs Summary

State of computational research

3-D full band quantum transport simulations are the most advanced techniques.

Typical full-band approach (OMEN)

- Empirical tight-binding model.
- Atomistic description.
- Parallelization of the workload.
- Heavy computational burden!

Need for simpler, faster simulation methods to rapidly explore large design spaces.

- 2 Simulation approach
- 3 Model validation
- Investigation of p-type NWFETs

Simulation approach

Model validation

Investigation of p-type NWFETs

Summary

Top of the Barrier (ToB) model

Landauer-Büttiker formalism in 1-D

$$I_D = -\frac{q}{\hbar} \int_{-\infty}^{\infty} \frac{dE}{2\pi} T(E) \left(f_S(E) - f_D(E) \right)$$

- Ballistic transport.
- Transmission T(E) = number of available bands at energy E.
- Transistor physics is reduced to a single point, the top/bottom of the electrostatic potential barrier (ToB).
- Works well for NWFETs with $L_G > 15$ nm.

Simulation approach

Model validation

Investigation of p-type NWFETs

Summary

Top of the Barrier (ToB) model

Landauer-Büttiker formalism in 1-D

$$I_D = -\frac{q}{\hbar} \int_{-\infty}^{\infty} \frac{dE}{2\pi} T(E) \left(f_S(E) - f_D(E) \right)$$

- Ballistic transport.
- Transmission T(E) = number of available bands at energy E.
- Transistor physics is reduced to a single point, the top/bottom of the electrostatic potential barrier (ToB).
- Works well for NWFETs with $L_G > 15$ nm.

Fails to describe source-to-drain tunneling in short-channel devices!

КЛ	Ot IN		nn
	OUN	aur	

Goals

Goal: Determine the I-V characteristics of devices with $L_G < 10$ nm, where intra-band tunneling is significant.

Total drain current (Landauer-Büttiker)

 I_D = thermionic current (I_{th}) + tunneling current (I_{tun})

		÷.,		÷.,		5
	IJ		I٧		u	

Goals

Goal: Determine the I-V characteristics of devices with $L_G < 10$ nm, where intra-band tunneling is significant.

Total drain current (Landauer-Büttiker)

 I_D = thermionic current (I_{th}) + tunneling current (I_{tun})

The tunneling probability depends both on the height and the shape of the electrostatic potential barrier!

Goals

Goal: Determine the I-V characteristics of devices with $L_G < 10$ nm, where intra-band tunneling is significant.

Total drain current (Landauer-Büttiker)

 I_D = thermionic current (I_{th}) + tunneling current (I_{tun})

The tunneling probability depends both on the height and the shape of the electrostatic potential barrier!

Quantities to be determined first:

- charge-density
- electrostatic potential

ToB picture:
$$\rho(V(x))$$

Poisson: $V(\rho(x))$

self-consistently

Then I_{tun} can be calculated using the WKB approximation.

Simulation approach

Model validation

Investigation of p-type NWFET:

Summary

Wentzel-Kramers-Brillouin approximation

WKB transmission through the barrier $T_{WKB}(E) = \sum_{n} \exp\left(-2\int_{x_n, s(E)}^{x_{n,D}(E)} \kappa_n(x) dx\right)$ Electrostatic potential Band structure X X_c Real band structure $-\kappa$ $E_{VB}(x)$ ΔE ш ш ΔE VBM Imaginary band structure х -0.50.5 Im(k) Re(k)

Áron Szabó and Mathieu Luisier

Full-band simulation of p-type ultra-scaled Si NWFETs

Motivation Simulation approach Model validation Investigation of p-type NWFETs Summary Charge density calculation

- Band structure is shifted with the electrostatic potential.
- Electron states are filled with respect to the S/D Fermi levels, considering reflection from the barrier.

Motivation Simulation approach Model validation Investigation of p-type NWFETs Summar Modified Poisson-equation Poisson-equation in 3-D $\Delta \Phi(x, y, z) = -\frac{\rho(x)}{\varepsilon_0 \varepsilon_{sc}}$

Simplifications:

- Cylindrical symmetry.
- Separation of variables.
- Parabolic approximation in the channel.
- Gate oxide acts like an ideal coaxial capacitor.
- Potential decays exponentially in the oxide around the source/drain extensions.

1-D Poisson-equation in the gate region

$$\frac{d^2\Phi(x)}{dx^2} + \frac{\Phi_g - \Phi(x)}{\lambda^2} = -\frac{\rho(x)}{\varepsilon_0\varepsilon_{\rm sc}}$$

Motivation	Simulation approach	Model validation	Investigation of p-type NWFETs	
Outline				

2 Simulation approach

3 Model validation

Investigation of p-type NWFETs

۲

Model validation

Investigation of p-type NWFETs

Comparison with 3-D atomistic simulations

- n-InAs<100>
- *d* = 4 nm
 - $L_G=15$ nm

- *d* = 4 nm
- $L_G = \{5, 10, 15\}$ nm

Áron Szabó and Mathieu Luisier

Full-band simulation of p-type ultra-scaled Si NWFETs

2 Simulation approach

3 Model validation

Investigation of p-type NWFETs

Subthreshold slopes

d = 4 nm

orientation	<i>m</i> *	$\kappa_1(0.2)$	
	$[m_0]$	[1/nm]	
<111>	0.12	0.76	
<110>	0.14	0.81	
<100>	0.49	1.28	

- Low m_{eff} → low κ, high tunneling rate.
- At short gate lengths source-to-drain tunneling limits the performance.

- Low m_{eff} → high I_{on} at large gate lengths (high injection velocity).
- Low $\kappa \rightarrow$ increased tunneling rate, lower I_{on}/I_{off} ratio at short gate lengths.
- Good compromise is needed with *m*^{*} and *k*.

- High mobility may become disadvantageous (m_{eff} and κ are not independent).
- Small diameter (d < 5 nm) is crucial when L_G < 10 nm (better electrostatic control).

- 2 Simulation approach
- 3 Model validation
- Investigation of p-type NWFETs

Motivation	Simulation approach	Model validation	Investigation of p-type NWFETs	Summary
Summar	v			

- Fast and accurate simulator was developed, based on the ToB model and accounting for intra-band tunneling through the WKB approximation.
- The model works well for both n- and p-type NWFETs.
- Gate-all-around nanowires with a wide range of design parameters were investigated.
- Low effective mass usually results in higher tunneling rates at short gate lengths.
- Small channel diameter (<5 nm) is needed when $L_G < 10$ nm.

